Evidence-based Updates on COVID-19
Special Topics: Early Proning & Effective Communication with Mechanically Ventilated Patients

Cindy Zellefrow DNP MSED RN LSN PHNA-BC EBP-C
Kimberly Ichrist MSN AG-ACNP CCRN
Sheena Palmer MSN APRN-FNP-C
Laura Weigel Moore BSN RN
Christa Zellefrow BSN RN
Cindy Beckett PhD RNC-OB LCCE LSS-BB CHRC EBP-C
Mary Beth Happ, PhD, RN, FAAN
Judith A. Tate, PhD, RN
The Ohio State University

COVID-19 Special Topics for Today

1) Early Proning
 (Presenters: Cindy Zellefrow & Cindy Beckett)

2) Effective Communication with Mechanically Ventilated Patients
 (Presenters: Mary Beth Happ & Judith Tate)
Early Proning in COVID-19 Patients

Cindy Zellefrow
Cindy Beckett

COVID-19: The State of the State

AS OF 4/20/20:
WORLDWIDE:
2,258,909 Cases
154,388 deaths
In the U.S.:
792,938 cases
39,083 deaths
The Pathophysiology of COVID-19

- Symptoms of COVID-19 are nonspecific
 - Fever (82%)
 - Cough (61%)
 - Muscle aches (36%)
 - Fatigue (36%)
 - Dyspnea (26%)

 Other symptoms include:
 - Headache
 - Sore Throat
 - Gastrointestinal symptoms

On CT scan—unique ground-glass opacities, septal thickening and parenchymal consolidation = challenges in medical management similar to that of patients with ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Borges de Nascimento et al., 2020

Berlin Definition of Acute Respiratory Distress Syndrome (ARDS)

Typical Characteristics:

- Timing—within 1 week of injury or new/worsening respiratory symptoms
- Chest Imaging—bilateral opacities; **unique to COVID 19 are glass-like crystallizations**
- Origin of edema—respiratory failure not fully explained by cardiac failure or fluid overload
- Oxygenation—delineated by \(\text{PaO}_2/\text{FiO}_2 \) (P/F) ratio with PEEP or CPAP
 - \(\text{PaO}_2 \)-partial pressure of oxygen=measurement of oxygen pressure in arterial blood
 - \(\text{FiO}_2 \)-fraction of inspired oxygen of room air; concentration of O2 that a person inhales
 - **Mild:** 200-300 mmHg with >5cm H2O
 - **Moderate:** 100-200 mmHg with >5cm H2O
 - **Severe:** <100 mmHg with >5cm H2O
Proning: Definitions

Proning: placing a patient, esp. one with respiratory failure due to ARDS, face down in a prone position
(Venes, D. & Tabers, C.W., 2017)

Early proning (also referred to as *self proning* or *awake proning* in the literature):

- non-mechanically ventilated patients
- patients able to participate in proning
- implemented as soon as a potential diagnosis is made
The Physiology of Proning

Proning:
- Changes pressure within the chest and abdominal cavities by changing the way structures and organs lie within these cavities
- Increases air flow, allowing compressed alveoli to open up
- Improves fluid drainage out of the dorsal lobes
- Increases perfusion to the lungs
- Improves oxygenation

In Juangsu Province, China, survival rates were better than other locations due to early recognition, followed by...

Sun et al. 2020
...early intervention for critical patients with COVID-19!

Search Strategy & Results

Databases searched: CINAHL, PubMed, Medline, Medline Plus Full Text, Scopus, Trip Database, Cochrane Library, Google Scholar, Web of Science

Additional search strategies: Gray literature, title search

Search techniques utilized: key words, MeSH headings, Subject headings, truncation, parentheses, quotation marks

Boolean Operators: AND & OR

Results: 98 articles reviewed

- 7 "keepers"
- Additional 13 kept for background information including nursing consideration
Levels of Evidence Table

- Level I: 1
- Level IV: 3
- Level VI: 1
- Level VII: 2

🌟 = COVID-19 article

Outcomes Synthesis Table of Early Proning

Legend:
🌟 = COVID-19 article
↑ = increase
↓ = decrease
*green indicates good outcome
Synthesis Table on Indications for Early Proning

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory rate > 30/min (on room air)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart rate > 120/min</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SPO2 < 93% on room air</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FiO2 > or equal to 0.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PaO2/FiO2 < 300 mmHg (mild ARDS)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PaO2/FiO2 < 200 mmHg (moderate ARDS)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alveolar collapse—seen on radiography</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indications for Early Proning

- Respiratory Rate > 30/min
- Heart Rate > 120/min
- SPO2 < 93% on room air
- FiO2 > or equal to 0.6
- PaO2/FiO2 < 300 mmHg (mild ARDS)
- PaO2/FiO2 < 200 mmHg (moderate ARDS)
- Alveolar collapse—seen on radiography
Contraindications for Early Proning

- Abdominal
- Cardiac
- Bleeding
- Neuro
- Trauma
- Increased intraocular pressure or ocular surgery
- Drainage tubes (chest tubes with anterior leaks; thoracic or abdominal)
- Tracheal surgery or sternotomy
- Asthma
- High dependency on airway and vascular access
- Weight: >135 kg (298); < 40 kg (88 lbs.);
- Height >198 cm (6ft. 6in.)
Synthesis Tables on Clinician Considerations

- Patient Positioning
- Length of time and frequency of proning
- Patient Monitoring
- Resources needed
- Potential complications

Patient positioning
- Alternating swimmers position q 2 hrs. (1 arm up; 2nd arm alongside body)
- Upper limbs alongside body
- Alternate position of head q 2 hrs. from facing right to facing left

Length of time proning 2-5 hours each session as tolerated

Frequency of proning: average twice daily but as much as tolerated by patient

Patient monitoring
- Heart rate; blood pressure; respiratory rate & effort; capnography; pulse oximetry; oxygen setting; PaO2/FiO2; agitation, central venous pressure (CVP) (if applicable);

Resources
- PPE; foot board; pain meds; extra EKG leads; minimum of 2 staff members; suction; additional pillows, sheets, towels and/or blankets; foam/foam dressings; turning/support frame (i.e. Vollman Prone Positioner)
Clinician Considerations- Complications (continued)

• Pressure ulcers
• Facial, orbital and ocular edema
• Accidental dislodgement or kinking of tubes or drains
• Aspiration
• Eye injury/corneal ulceration; Unilateral blindness; Retinal ischemia
• Nerve damage (pressure neuropathies, hyperextension of the shoulder, nerve injury to arm)
• Wound dehiscence
• Cardiovascular instability, arrhythmia
• Hemodynamic instability

Key points to leave you with…

• Oxygenation has been a difficult issue to manage in COVID 19 patients
• Research supports proning changes the natural mechanics of ventilating the lungs and improves oxygenation
• Literature supports early proning as an easily implemented, cost effective intervention that shows promise of improving outcomes for patients with COVID-19
• Early proning requires staff, patient and family education
• Patients who are early proning must be monitored for changes in condition and potential complications
• More research needs to be done around early proning
Evidence-based Recommendations

- **Implement early proning** as soon as a potential COVID-19 case is identified
- **Train** clinicians, patients and families on early proning:
 - How to prone (human and supply resources needed, proper positioning)
 - How often (at least twice a day but more if tolerated by patient,
 - How long (minimum of 30 minutes but average 2-5 hrs./day or more as tolerated)
 - Monitoring of patients
 - Potential complications
- **Document** details of proning and monitoring in detail
- **Engage QI department** to support tracking and trending outcomes data
- **Engage researchers** to conduct research on early proning

- **Let the evidence guide your journey,**
- **Engage quality improvement,**
- **Engage research**

It's not necessarily the amount of time you spend at practice that counts; it's what you put into the practice.

Eric Lindros
Evidence-based Techniques for Effective Communication with Mechanically Ventilated Patients

Mary Beth Happ
Judith Tate

- Communication impairment is a common, frightening condition of mechanical ventilation
- PPE masks are communication barriers
- Families are not present
- Misinterpretation (ex: pants vs. pain) can be dangerous
Common Myths:

• One size fits all
• I’m a good lip reader
• I know the 5 things my patient needs to say
• Family members can interpret
• My patient can’t use a communication tool

Experts in communication disorders science and patient-provider communication research in ICU have developed a set of tips and resources.
Communication Assessment and Intervention Framework – use as clinical decision guide

Provide support for patient comprehension

Use communication tools and techniques – download and print

View training or demonstration videos

Consult the experts – Speech Language Pathologists (SLP) to help

PATIENT ASSESSMENT IS A KEY FIRST STEP

http://go.osu.edu/speacs
1. Get the patient’s attention - lock eyes

Study of Patient-Nurse Effectiveness with Assisted Communication Strategies (SPEACS) NIH grant #5R01 HD043988, M. Happ

Courtesy of Robert Wood Johnson Foundation
2. Vision and Hearing Aids

- Keep glasses and hearing aids or amplifier at bedside
- Label glasses (case) as “distance” or “reading”
- Hearing aid batteries
- Use LARGE Print

3. Establish a consistent YES / NO

- Head nods
- Eyes up for YES, scrunch eyes for NO
- Thumbs up for YES, thumb in fist for NO

- Use tagged yes/no questions to improve comprehension

Pass it on…. Post a Communication Care Plan
4. Use Visual Cues

- Point and gesture deliberately as you talk
- Write key words or pictures

- YOUR OXYGEN IS LOW
- WE WILL TURN YOU ON YOUR STOMACH
- I WILL GIVE YOU MEDICINE FIRST

5. Written Choice Strategy

(Garrett & Beukelman, 1995)

“What music would you like to listen to?”

- Jazz
- Rock
- Classical
- Other
6. Writing Tips

- Use thin – medium point felt-tip pens
- Try simple orthotic aids - pen grips
- Notebooks, Clipboards
- Coach patients to point to previously used phrases
- White boards – dry erase markers
- Finger writing on touch pad

7. Communication Boards

- + Language Translations

Photo courtesy of Vidatak, LLC

Electronic Tablets

Society of Critical Care Medicine
Patient Provider Communication Forum COVID19 Task Force

Tami Altschuler, MA, CCC-SLP, NYU Langone Medical Center
Sarah Gendreau, MS CCC-SLP, Massachusetts General Hospital
Jessica Gormley, Ph.D., CCC-SLP, University of Nebraska Medical Center
Mary Beth Happ, PhD, RN, FAAN, The Ohio State University College of Nursing
Richard Hurtig, PhD, The University of Iowa Chief Scientific Officer, Voxello
Sarah Marshall, MA, CCC-SLP, University of Wisconsin-Madison
Rachel Santiago, MS, CCC-SLP, Boston Children’s Hospital
Stephanie Scibilia, MS CCC-SLP, Massachusetts General Hospital
Judith A. Tate, PhD, RN, The Ohio State University College of Nursing
Rachel Toran Towbin, MS CCC-SLP, Massachusetts General Hospital
Sarah Blackstone, PhD, CCC-SLP
Harvey Pressman, PhD

https://www.patientprovidercommunication.org/
We believe that evidence is an especially powerful tool in a time like this. We hope that putting these evidence-based resources into your hands will help you make the best decisions possible while caring for COVID-19 patients and families.

Helene Fuld Health Trust National Institute for Evidence-based Practice in Nursing and Healthcare

© Copyright, 2020
The Ohio State University College of Nursing
Image Credit: Creative Commons • Getty Images®